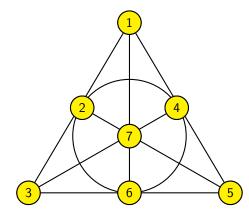
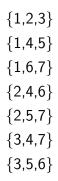
Codes and Designs Over GF(q)

Eimear Byrne University College Dublin

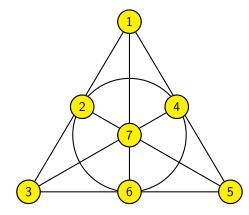
ICERM, Nov 12-16 2018

A Design - the Fano Plane





A Design - the Fano Plane



 $\begin{array}{l} [1,1,1,0,0,0,0] \\ [1,0,0,1,1,0,0] \\ [1,0,0,0,0,1,1] \\ [0,1,0,1,0,1,0] \\ [0,1,0,0,1,0,1] \\ [0,0,1,1,0,0,1] \\ [0,0,1,0,1,1,0] \end{array}$

[0,0,0,1,1,1,1]	[1,1,1,0,0,0,0,0]
[0, 1, 1, 0, 0, 1, 1]	[1,0,0,1,1,0,0]
[0,1,1,1,1,0,0]	[1,0,0,0,0,1,1]
[1,0,1,0,1,0,1]	[0, 1, 0, 1, 0, 1, 0]
[1,0,1,1,0,1,0]	[0,1,0,0,1,0,1]
[1,1,0,0,1,1,0]	[0,0,1,1,0,0,1]
[1, 1, 0, 1, 0, 0, 1]	[0,0,1,0,1,1,0]
[1, 1, 1, 1, 1, 1, 1]	[0,0,0,0,0,0,0]

[1,1,1,0,0,0,0]

A Code That Holds a Design - the Hamming Code

[0,0,0,1,1,1,1]

Codes and Designs

Definition

A t- (n, d, λ) design is a pair $\mathbf{D} = (\mathbf{P}, \mathbf{B})$, where \mathbf{P} is an *n*-set (points) and \mathbf{B} is a collection of *d*-subsets of \mathbf{P} (blocks) such that every *t*-set of points of \mathbf{P} is contained in exactly λ blocks of \mathbf{B} .

• The Fano plane is a 2-(7,3,1) design (also called a Steiner system).

Definition

An \mathbb{F}_{q} -[n, k, d] (Hamming metric) code is a k-dimensional subspace of \mathbb{F}_{q}^{n} , such that the minimum of the Hamming weights of its non-zero elements is d.

• The binary Hamming code shown before is an \mathbb{F}_{2} -[7,4,3] code.

q-Analogues of Codes and Designs

Definition

A t- $(n, d, \lambda)_q$ design is a pair $\mathbf{D} = (V, \mathbf{B})$, where V is an n-dimensional \mathbb{F}_q -space and \mathbf{B} is a collection of d-dimensional subspaces (blocks) of V, such that every t-dimensional subspace of V is contained in exactly λ blocks of \mathbf{B} .

• A q-analogue of the Fano plane would be an $2-(7,3,1)_q$ design.

Definition

An $\mathbb{F}_{q^{-}}[n \times m, k, d]$ rank metric code is a k-dimensional subspace of $\mathbb{F}_{q}^{n \times m}$, such that the minimum of the ranks of its non-zero elements is d.

• Any k-dimensional subspace of $\mathbb{F}_{a^m}^n$ is a km-dimensional rank metric code.

The Assmus-Mattson Theorem

Hamming Weight Distributions

The Hamming weight of $v \in \mathbb{F}_q^n$ is: $w_H(v) := |\{i : v_i \neq 0\}|$.

The support of v is: $\sigma_H(v) := \{i : v_i \neq 0\}.$

Definition

Let C be an $\mathbb{F}_{q^-}[n,k]$ code. The Hamming weight distribution of C is $(A_i(C):i\geq 0)$ where

$$A_i(C) := |\{c \in C : w_H(c) = i\}|.$$

If $A_i(C) \neq 0$ and $i \geq 1$, we say that *i* is a weight of *C*.

- The 3-supports of the Hamming code shown are the blocks of the Fano plane.
- An \mathbb{F}_{2} -[7,4,3] code has weight distribution (1,0,0,7,7,0,0,1).
- The weight distribution of an extremal code is often determined.

Duality

- $C^{\perp} = \{x \in \mathbb{F}_q^n : x \cdot y = 0 \, \forall y \in C\}.$
- The Assmus-Mattson theorem relies on the MacWilliams duality theorem:

$$(A_i(C): 0 \le i \le n)P = (A_i(C^{\perp}): 0 \le i \le n),$$

for an invertible transform matrix P.

Example

- If C is the \mathbb{F}_2 -[7,4,3] (Hamming) code, then C^{\perp} is the \mathbb{F}_2 -[7,3,4] (Simplex) code
 - C has weight distribution (1,0,0,7,7,0,0,1),
 - C^{\perp} has weight distribution (1,0,0,0,7,0,0,0).

Theorem (Assmus-Mattson, 1969)

Let C be an \mathbb{F}_q -[n,k,d] code. Let $t \leq d \leq n-t$. Suppose that C^{\perp} has at most d-t weights in $\{1,...,n-t\}$. Then the supports of the words of weight d in C form the blocks of a t-design.

Let w be the greatest integer such that for each $d \leq s \leq w$ and every s-support S of C

$$|\{c \in C : \sigma_H(c) = S\}|$$
 depends only on s.

Let w^{\perp} be defined similarly. Then the

- **(**) *s*-supports of C form the blocks of a t-design, $d \le s \le w$,
- **3** s-supports of C^{\perp} form the blocks of a t-design, $d^{\perp} \leq s \leq \min\{w^{\perp}, n-t\}$.
 - The (Hamming) support of c is $\sigma_H(c) := \{i : c_i \neq 0\}.$

The Assmus-Mattson Theorem

Theorem

Let C be an \mathbb{F}_q -[n,k,d] code. Let $t \leq d \leq n-t$. Suppose that C^{\perp} has at most d-t weights in $\{1,...,n-t\}$. Then the d-supports of C form the blocks of a t- (n,d,λ) design.

- The \mathbb{F}_2 -[7,4,3] code *C* has dual with weight distribution (1,0,0,0,7,0,0,0). As d-2=3-2=1, the 3-supports of *C* form a 2-design.
- The \mathbb{F}_2 -[24,12,8] Golay code is self-dual with weights {8,12,16,24}. There are 8-5=3 weights $\leq 25-5=19$. The 8-supports form a 5-(24,8,1) design.
- The \mathbb{F}_3 -[12,6,6] Golay code is self-dual with weights {6,9,12}. There is 6-5=1 weight $\leq 12-5=7$. The 6-supports form a 5-(12,6,1) design.
- Many classes of BCH codes have dual codes with few weights & hold designs.

Subspace Designs

Subspace Designs

Theorem

Let $n \equiv 1 \mod 6, n \geq 7$. Let $\mathbf{P} = \mathbb{F}_{q^n}^{\times}$ and let

$$\mathbf{B} := \{ \langle x^2, xy, y^2 \rangle_{\mathbb{F}_q} : \langle x, y \rangle \subset \mathbb{F}_{q^n}^{\times}, \dim_{\mathbb{F}_q} \langle x, y \rangle = 2 \}.$$

Then (\mathbf{P}, \mathbf{B}) is a 2- $(n, 3, q^2 + q + 1)_q$ design.

- Thomas, 1987, q = 2, construction using orbits of planes under $\mathbb{F}_{2^n}^{\times}$
- Suzuki, 1990, $q = 2^m$; 1992 any prime power q.

Problem

If
$$(n, (2r)!) = 1$$
, is this a design?

$$\mathbf{B} := \{ \langle x^r, x^{r-1}y, ..., xy^{r-1}, y^r \rangle_{\mathbb{F}_q} : \langle x, y \rangle \subset \mathbb{F}_{q^n}^{\times}, \dim_{\mathbb{F}_q} \langle x, y \rangle = 2 \}.$$

Other Examples

- Most known examples of subspace designs were found by prescribing an automorphism group.
- $\tau \in \Gamma L(V)$ is an automophism of (V, \mathbf{B}) if $B \in \mathbf{B} \implies B^{\tau} \in \mathbf{B}$.
- The first *t*-subspace design with t = 3 was found with the normalizer of a Singer cycle as an automorphism group (Braun, Kerber, Laue, 2005).

If A is the $\begin{bmatrix} n \\ t \end{bmatrix}_q \times \begin{bmatrix} n \\ d \end{bmatrix}_q$ incidence matrix of t-subspaces and k-subspaces, then finding a t- (n, d, λ) designs amounts to solving the following equation for a 0-1 vector x.

$$Ax = \lambda \mathbf{1}.$$

If we assume an automorphism group of the design, then A is replaced with a $T \times D$ matrix with T orbits of t-spaces and D orbits of d-spaces.

Subspace Designs - Steiner Systems

- A (k-1)-spread in PG(n-1,q) is a $1-(n,k,1)_q$ design.
- A 2- $(n,3,1)_q$ is called a q-Steiner triple system, $STS_q(n)$.
- An $STS_q(n)$ exists only if $n \equiv 1 \mod 6$ or $n \equiv 3 \mod 6$.
- It is not yet known if there exists an $STS_q(7)$, i.e. a 2- $(7,3,1)_q$ design,
 - the q-analogue of the Fano plane.

Theorem (Braun, Etzion, Östergard, Vardy, Wassermann, 2016) 2-(13,3,1)₂ Steiner triple systems exist.

Theorem (Braun, Wassermann, 2018)

There are 1316 mutually disjoint $2 - (13,3,1)_2$ designs, which implies the existence of a 2-(13,3, λ) design for each $\lambda \in \left\{1,...,2047 = \begin{bmatrix} 13-2\\ 3-2 \end{bmatrix}_2\right\}$.

Theorem (Itoh, 1998)

Let $v, s, r, \ell \in \mathbb{N}_0$ such that $r \in \{0, 1\}$, r = 0 if 3 $\not\mid \ell$ and

$$\lambda = q(q+1)(q^3-1)s + q(q^2-1)r.$$

Let $S(\ell, q)$ be the conjugacy class of Singer cycle groups in $GL(\ell, q)$. If there exists an $S(\ell, q)$ -invariant 2- $(\ell, 3, \lambda)_q$ design then there exists an $SL(v, q^{\ell})$ -invariant 2- $(v\ell, 3, \lambda)_q$ design.

Itoh's result has been used to obtain many concrete examples of subspace designs.

Theorem (Fazeli, Lovett, Vardy, 2014)

Let q be a prime power and let n, d, t be positive integers with d > 12(t+1). If $n \ge cdt$ for a sufficiently large constant c, then there exists a non-trivial $t-(n,d,\lambda)_q$ design. Moreover, these designs have at most $q^{12(t+1)n}$ blocks.

An existence result for q-Steiner systems is not known.

Known Infinite Families

$t-(n,r,\lambda)$	\mathbb{F}_q	Constraints	
2-(<i>n</i> ,3,7)	\mathbb{F}_2	$(n,6) = 1, n \ge 7$	1987
$2 - \left(n, 3, \begin{bmatrix} 3 \\ 1 \end{bmatrix}_q\right)$	\mathbb{F}_{q}	$(n,6)=1, n\geq 7$	1992
$2 - \left(\ell s, 3, q^3 \begin{bmatrix} s-5\\1 \end{bmatrix}_q \right)$	\mathbb{F}_{q}	if $\exists 2 - \left(s, 3, q^3 \begin{bmatrix} s-5\\1 \end{bmatrix}_q\right)$ design over \mathbb{F}_q that is invariant under a Singer cycle	1999
$2 - \left(n, r, \frac{1}{2} \begin{bmatrix} n-2 \\ r-2 \end{bmatrix}_q\right)$	$\mathbb{F}_3, \mathbb{F}_5$	$n \ge 6, n \equiv 2 \mod 4,$ $3 \le r \le n-3, r \equiv 3 \mod 4$	2017

Table: Known infinite families of subspace designs.

- Up to now, there are no other methods known to produce subspace designs.
- Actions of *t*-transitive groups yield only trivial subspace designs.
- Prescribing an automorphism group still requires parameters to be not too big.
- A new approach is required if there is any hope to find infinite families.

This motivates using ideas from coding theory to construct new subspace designs.

Matrix Codes and Designs

- For any $X \in \mathbb{F}_q^{n imes m}$, define $\sigma(X) := \operatorname{colspace}(X)$.
- For any $x \in \mathbb{F}_{q^m}^n$, define $\sigma(x) := \operatorname{colspace}(\Gamma(x))$, where $\Gamma(x) \in \mathbb{F}_{q^m}^{m \times n}$ is the expression of x wrt an \mathbb{F}_q -basis Γ of \mathbb{F}_{q^m} .
- An *r*-support of a rank metric code is an *r*-dimensional subspace U of \mathbb{F}_q^n that is the support of a codeword.

Question

When do the *r*-supports of a rank metric code form a subspace design?

Theorem (B., Ravagnani, 2018)

Let C be an \mathbb{F}_q - $[n \times m, k, d]$ rank metric code. Let $t \le d \le n-t$. Suppose that C^{\perp} has at most d-t ranks in $\{1, ..., n-t\}$.

Let w be the greatest integer such that for each $d\leq s\leq w$ and every s-support $S\subset \mathbb{F}_a^n$ of C

$$|\{c \in C : \sigma(c) = S\}|$$
 depends only on s.

Let w^{\perp} be defined similarly. Then the

() s-supports of C form a t-subspace design, $d \le s \le w$.

3 s-supports of C^{\perp} form a t-subspace design, $d^{\perp} \leq s \leq \min\{w^{\perp}, n-t\}$.

An Assmus-Mattson Theorem for Rank Metric Codes

- MacWilliams duality theorem holds for rank metric codes.
- Intere exist dual operations of puncturing and shortening.
- Ocompatibility of these operations with supports of matrices.
- Invariance of matrix rank under \mathbb{F}_q -isomorphisms.

Basic Idea

- If C^{\perp} has d-t ranks, the weight distribution of any punctured code of C in $\mathbb{F}_q^{(n-t)\times m}$ is determined.
- The words of rank d-t in a punctured code in $\mathbb{F}_q^{(n-t)\times m}$ correspond to words of rank d whose d-supports contain a t-dimensional space.
- This number is invariant of the choice of subspace.

Corollary (B., Ravagnani, 2018)

Let C be an \mathbb{F}_{q^m} -[n,k,d] code. Let $1 \leq t < d$ be an integer, and assume that

$$|\{1 \le i \le n-t : W_i(C^{\perp}) \ne 0\}| \le d-t.$$

Let d^{\perp} be the minimum distance of C^{\perp} . Then

- the d-supports of C form the blocks of a t-design over \mathbb{F}_q ,
- **2** the d^{\perp} -supports of C^{\perp} form the blocks of a t-design over \mathbb{F}_q .

A Subspace Design from a Rank Metric Code

Example

Let s be a positive integer and let m = 2s. Let $\{\alpha_1, ..., \alpha_m\}$ be an \mathbb{F}_q -basis of \mathbb{F}_{q^m} . Let C be the \mathbb{F}_{q^m} -[m, m-2, 2] vector rank metric code with parity check matrix

$$\mathcal{H} = \left[egin{array}{cccc} lpha_1 & lpha_2 & \cdots & lpha_m \ lpha_1^{q^s} & lpha_2^{q^s} & \cdots & lpha_m^{q^s} \end{array}
ight]$$

Then C^{\perp} has \mathbb{F}_q -ranks $\{s, 2s\}$.

Set t = 1. C^{\perp} has exactly d - t = 1 weight, s, in $\{1, ..., 2s - 1\}$.

The supports of the codewords of C of rank 2 form a 1-design over \mathbb{F}_q and the words of rank s in C^{\perp} form a 1-(m, s, 1) subspace design (a spread).

A Subspace Design from a Rank Metric Code

Example

Let $n \leq m$ and let $\{\alpha_1, ..., \alpha_n\} \subset \mathbb{F}_{q^m}$ be linearly independent over \mathbb{F}_q . Let C be the \mathbb{F}_{q^m} -[n, k, n-k+1] rank metric code generated by the rows of

 C^{\perp} has ranks $\{d^{\perp} = k+1, k+2, ..., n\}$. For $1 \leq t \leq d$, C^{\perp} has

$$n - t - d^{\perp} + 1 = n - t - k < d - t = n - k + 1 - t$$

ranks in $\{1, ..., n-t\}$. So the minimum rank vectors of C and C^{\perp} hold t-designs...

An \mathbb{F}_{q} - $[n \times m, k, d]$ code is called MRD if $k = \max\{m, n\}(\min\{m, n\} - d + 1)$.

- The minimum rank words of any MRD code hold *t*-designs, but they are trivial! Every *d*-dimensional space of \mathbb{F}_{a}^{n} is a *d*-support of the code.
- If an \mathbb{F}_{q^m} -[n, k, d] rank metric code holds a trivial design, it must be MRD.
- The last statement is false for rank metric codes that are not \mathbb{F}_{q^m} -linear.

No constructions of codes that hold non-trivial designs for $t \ge 2$ are known yet.

- Not many classes of rank-metric codes are known.
- Known families of rank metric codes are all MRD.
- Subspace designs from MRD codes are trivial.

Problem

Construct a family of \mathbb{F}_{q^m} -linear rank metric codes with a small number of ranks.

Problem

Construct \mathbb{F}_q -linear matrix codes where the number of codewords with a given *d*-support is invariant.

Existence Results

Lemma (B. Ravagnani, 2018)

Let C is an \mathbb{F}_q - $[n \times m, k, d]$ code satisfying the hypothesis of of the rank-metric Assmus-Mattson theorem. If $m \ge \log_q(4) + n^2/4$, then C^{\perp} has either d or d + 1 ranks.

Theorem (B. Ravagnani, 2018)

Let C be an \mathbb{F}_{q^m} -[n, k, d] code if $m \ge n$ is sufficiently large then C^{\perp} has at least n - k ranks.

Corollary (B. Ravagnani, 2018)

Let C be an \mathbb{F}_{q^m} -[n, k, d] code and let $1 \le t \le d-1$. If $m \ge n$ is sufficiently large and if C satisfies the hypothesis of the rank-metric Assmus-Mattson theorem then $d \ge n-k$.

Existence Questions

Problem

Are any of the known subspace designs realizable as d-supports of \mathbb{F}_{q^m} -[n, k, d] rank metric codes?

Problem

Does there exist an \mathbb{F}_{q^m} -[7, k, 3] rank metric code whose 3-supports form the Fano plane?

Problem

Do there exist q-BCH codes with minimum rank distance \geq 5 whose dual codes have few ranks?

Problem

What can we say in general about existence of codes satisfying the rank Assmus-Mattson theorem?

References

- E. F. Assmus, Jr., H. F. Mattson, Jr., New 5-Designs, Jour. Comb. Thy, 6 1969.
- M. Braun, M. Kiermaier, A. Kohnert, R. Laue, Large Sets of Subspace Designs, Jour. Comb. Thy (A), **147**, 2017.
- M. Braun, M. Kiermaier, A. Wassermann, *q*-Analogs of Designs: Subspace Designs, in Network Coding and Subspace Designs, Eds. M. Greferath, M. Pavcevic, A. Vazquez-Castro, N. Silberstein, Springer-Verlag Berlin, 2018.
- M. Braun, M. Kiermaier, A. Wassermann, Computational Methods in Subspace Designs, in Network Coding and Subspace Designs, Eds. M. Greferath, M. Pavcevic, A. Vazquez-Castro, N. Silberstein, Springer-Verlag Berlin, 2018.
- Ī
- A. Fazeli, S. Lovett, A. Vardy, Nontrivial t-Designs Over Finite Fields Exist For All *t*, J. Combin. Theory Ser. A 127, 2014.
- T. Itoh, A New Family of 2-designs over GF(q) Admitting $SL_m(q^{\ell})$, Geom. Dedicata 69(3), 1998.
- H. Suzuki, 2-Designs over *GF*(*q*) Graphs Comb. **8** (4), 1992.

