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A Design - the Fano Plane
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A Design - the Fano Plane
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A Code That Holds a Design - the Hamming Code
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Codes and Designs

Definition

A t-(n,d ,λ ) design is a pair D = (P,B), where P is an n-set (points) and B is a
collection of d-subsets of P (blocks) such that every t-set of points of P is
contained in exactly λ blocks of B.

The Fano plane is a 2-(7,3,1) design (also called a Steiner system).

Definition

An Fq-[n,k,d ] (Hamming metric) code is a k-dimensional subspace of Fn
q, such

that the minimum of the Hamming weights of its non-zero elements is d .

The binary Hamming code shown before is an F2-[7,4,3] code.
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q-Analogues of Codes and Designs

Definition

A t-(n,d ,λ )q design is a pair D = (V ,B), where V is an n-dimensional Fq-space
and B is a collection of d-dimensional subspaces (blocks) of V , such that every
t-dimensional subspace of V is contained in exactly λ blocks of B.

A q-analogue of the Fano plane would be an 2-(7,3,1)q design.

Definition

An Fq-[n×m,k ,d ] rank metric code is a k-dimensional subspace of Fn×m
q , such

that the minimum of the ranks of its non-zero elements is d .

Any k-dimensional subspace of Fn
qm is a km-dimensional rank metric code.
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The Assmus-Mattson Theorem
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Hamming Weight Distributions

The Hamming weight of v ∈ Fn
q is: wH(v) := |{i : vi 6= 0}|.

The support of v is: σH(v) := {i : vi 6= 0}.

Definition

Let C be an Fq-[n,k] code. The Hamming weight distribution of C is
(Ai (C ) : i ≥ 0) where

Ai (C ) := |{c ∈ C : wH(c) = i}|.

If Ai (C ) 6= 0 and i ≥ 1, we say that i is a weight of C .

The 3-supports of the Hamming code shown are the blocks of the Fano plane.

An F2-[7,4,3] code has weight distribution (1,0,0,7,7,0,0,1).

The weight distribution of an extremal code is often determined.
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Duality

C⊥ = {x ∈ Fn
q : x ·y = 0∀y ∈ C}.

The Assmus-Mattson theorem relies on the MacWilliams duality theorem:

(Ai (C ) : 0≤ i ≤ n)P = (Ai (C
⊥) : 0≤ i ≤ n),

for an invertible transform matrix P.

Example

If C is the F2-[7,4,3] (Hamming) code, then C⊥ is the F2-[7,3,4] (Simplex) code

C has weight distribution (1,0,0,7,7,0,0,1),

C⊥ has weight distribution (1,0,0,0,7,0,0,0).
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The Assmus-Mattson Theorem

Theorem (Assmus-Mattson, 1969)

Let C be an Fq-[n,k ,d ] code. Let t ≤ d ≤ n− t. Suppose that C⊥ has at most
d − t weights in {1, ...,n− t}. Then the supports of the words of weight d in C
form the blocks of a t-design.

Let w be the greatest integer such that for each d ≤ s ≤ w and every s-support S
of C

|{c ∈ C : σH(c) = S}| depends only on s.

Let w⊥ be defined similarly. Then the

1 s-supports of C form the blocks of a t-design, d ≤ s ≤ w,

2 s-supports of C⊥ form the blocks of a t-design, d⊥ ≤ s ≤min{w⊥,n− t}.

The (Hamming) support of c is σH(c) := {i : ci 6= 0}.
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The Assmus-Mattson Theorem

Theorem

Let C be an Fq-[n,k ,d ] code. Let t ≤ d ≤ n− t. Suppose that C⊥ has at most
d − t weights in {1, ...,n− t}. Then the d-supports of C form the blocks of a
t-(n,d ,λ ) design.

The F2-[7,4,3] code C has dual with weight distribution (1,0,0,0,7,0,0,0).
As d −2 = 3−2 = 1, the 3-supports of C form a 2-design.

The F2-[24,12,8] Golay code is self-dual with weights {8,12,16,24}. There
are 8−5 = 3 weights ≤ 25−5 = 19.The 8-supports form a 5-(24,8,1) design.

The F3-[12,6,6] Golay code is self-dual with weights {6,9,12}. There is
6−5 = 1 weight ≤ 12−5 = 7. The 6-supports form a 5-(12,6,1) design.

Many classes of BCH codes have dual codes with few weights & hold designs.
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Subspace Designs
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Subspace Designs

Theorem

Let n ≡ 1 mod 6,n ≥ 7. Let P = F×qn and let

B := {〈x2,xy ,y2〉Fq : 〈x ,y〉 ⊂ F×qn ,dimFq 〈x ,y〉= 2}.

Then (P,B) is a 2-(n,3,q2 +q+ 1)q design.

Thomas, 1987, q = 2, construction using orbits of planes under F×2n
Suzuki, 1990, q = 2m; 1992 any prime power q.

Problem

If (n,(2r)!) = 1, is this a design?

B := {〈x r ,x r−1y , ...,xy r−1,y r 〉Fq : 〈x ,y〉 ⊂ F×qn ,dimFq 〈x ,y〉= 2}.

E. Byrne Codes and Designs Over GF(q) ICERM, Nov 12-16 2018 13 / 31



Other Examples

Most known examples of subspace designs were found by prescribing an
automorphism group.

τ ∈ ΓL(V ) is an automophism of (V ,B) if B ∈ B =⇒ Bτ ∈ B.

The first t-subspace design with t = 3 was found with the normalizer of a
Singer cycle as an automorphism group (Braun, Kerber, Laue, 2005).

If A is the

[
n

t

]
q

×

[
n

d

]
q

incidence matrix of t-subspaces and k-subspaces, then

finding a t-(n,d ,λ ) designs amounts to solving the following equation for a 0−1
vector x .

Ax = λ1.

If we assume an automorphism group of the design, then A is replaced with a
T ×D matrix with T orbits of t-spaces and D orbits of d-spaces.
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Subspace Designs - Steiner Systems

A (k−1)-spread in PG (n−1,q) is a 1-(n,k ,1)q design.

A 2-(n,3,1)q is called a q-Steiner triple system, STSq(n).

An STSq(n) exists only if n ≡ 1 mod 6 or n ≡ 3 mod 6.

It is not yet known if there exists an STSq(7), i.e. a 2-(7,3,1)q design,
- the q-analogue of the Fano plane.

Theorem (Braun, Etzion, Östergard, Vardy, Wassermann, 2016)

2-(13,3,1)2 Steiner triple systems exist.

Theorem (Braun, Wassermann, 2018)

There are 1316 mutually disjoint 2− (13,3,1)2 designs, which implies the

existence of a 2-(13,3,λ ) design for each λ ∈

{
1, ...,2047 =

[
13−2

3−2

]
2

}
.
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Itoh’s Construction

Theorem (Itoh, 1998)

Let v ,s, r , ` ∈ N0 such that r ∈ {0,1}, r = 0 if 3 6 | ` and

λ = q(q+ 1)(q3−1)s +q(q2−1)r .

Let S(`,q) be the conjugacy class of Singer cycle groups in GL(`,q).

If there exists an S(`,q)-invariant 2-(`,3,λ )q design then there exists an
SL(v ,q`)-invariant 2-(v`,3,λ )q design.

Itoh’s result has been used to obtain many concrete examples of subspace designs.
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Existence of Subspace Designs

Theorem (Fazeli, Lovett, Vardy, 2014)

Let q be a prime power and let n,d , t be positive integers with d > 12(t + 1).

If n ≥ cdt for a sufficiently large constant c, then there exists a non-trivial
t-(n,d ,λ )q design.

Moreover, these designs have at most q12(t+1)n blocks.

An existence result for q-Steiner systems is not known.
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Known Infinite Families

t-(n, r ,λ ) Fq Constraints

2-(n,3,7) F2 (n,6) = 1, n ≥ 7 1987

2-

n,3,

[
3

1

]
q

 Fq (n,6) = 1, n ≥ 7 1992

2-

`s,3,q3

[
s−5

1

]
q

 Fq
if ∃ 2-

s,3,q3

[
s−5

1

]
q

 design over Fq

that is invariant under a Singer cycle

1999

2-

n, r ,
1

2

[
n−2

r −2

]
q

 F3,F5
n ≥ 6, n ≡ 2 mod 4,

3≤ r ≤ n−3, r ≡ 3 mod 4
2017

Table: Known infinite families of subspace designs.
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Some Remarks

Up to now, there are no other methods known to produce subspace designs.

Actions of t-transitive groups yield only trivial subspace designs.

Prescribing an automorphism group still requires parameters to be not too
big.

A new approach is required if there is any hope to find infinite families.

This motivates using ideas from coding theory to construct new subspace designs.
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Matrix Codes and Designs
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Supports in Matrix Codes

For any X ∈ Fn×m
q , define σ(X ) := colspace(X ).

For any x ∈ Fn
qm , define σ(x) := colspace(Γ(x)), where Γ(x) ∈ Fm×n

q is the
expression of x wrt an Fq-basis Γ of Fqm .

An r -support of a rank metric code is an r -dimensional subspace U of Fn
q

that is the support of a codeword.

Question
When do the r -supports of a rank metric code form a subspace design?

E. Byrne Codes and Designs Over GF(q) ICERM, Nov 12-16 2018 21 / 31



An Assmus-Mattson Theorem for Rank Metric Codes

Theorem (B., Ravagnani, 2018)

Let C be an Fq-[n×m,k,d ] rank metric code. Let t ≤ d ≤ n− t. Suppose that
C⊥ has at most d − t ranks in {1, ...,n− t}.

Let w be the greatest integer such that for each d ≤ s ≤ w and every s-support
S ⊂ Fn

q of C
|{c ∈ C : σ(c) = S}| depends only on s.

Let w⊥ be defined similarly. Then the

1 s-supports of C form a t-subspace design, d ≤ s ≤ w.

2 s-supports of C⊥ form a t-subspace design, d⊥ ≤ s ≤min{w⊥,n− t}.
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An Assmus-Mattson Theorem for Rank Metric Codes

1 MacWilliams duality theorem holds for rank metric codes.

2 There exist dual operations of puncturing and shortening.

3 Compatibility of these operations with supports of matrices.

4 Invariance of matrix rank under Fq-isomorphisms.

Basic Idea

If C⊥ has d − t ranks, the weight distribution of any punctured code of C in

F(n−t)×m
q is determined.

The words of rank d − t in a punctured code in F(n−t)×m
q correspond to

words of rank d whose d-supports contain a t-dimensional space.

This number is invariant of the choice of subspace.
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An Assmus-Mattson Theorem for Rank Metric Codes

Corollary (B., Ravagnani, 2018)

Let C be an Fqm -[n,k ,d ] code. Let 1≤ t < d be an integer, and assume that

|{1≤ i ≤ n− t : Wi (C
⊥) 6= 0}| ≤ d − t.

Let d⊥ be the minimum distance of C⊥. Then

1 the d-supports of C form the blocks of a t-design over Fq,

2 the d⊥-supports of C⊥ form the blocks of a t-design over Fq.

E. Byrne Codes and Designs Over GF(q) ICERM, Nov 12-16 2018 24 / 31



A Subspace Design from a Rank Metric Code

Example

Let s be a positive integer and let m = 2s. Let {α1, ...αm} be an Fq-basis of Fqm .
Let C be the Fqm -[m,m−2,2] vector rank metric code with parity check matrix

H =

[
α1 α2 · · · αm

α
qs

1 α
qs

2 · · · α
qs
m

]
.

Then C⊥ has Fq-ranks {s,2s}.

Set t = 1. C⊥ has exactly d − t = 1 weight, s, in {1, ...,2s−1}.

The supports of the codewords of C of rank 2 form a 1-design over Fq and the
words of rank s in C⊥ form a 1-(m,s,1) subspace design (a spread).
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A Subspace Design from a Rank Metric Code

Example

Let n ≤m and let {α1, ...,αn} ⊂ Fqm be linearly independent over Fq.
Let C be the Fqm -[n,k ,n−k + 1] rank metric code generated by the rows of

G =



α1 α2 · · · αn

α
q
1 α

q
2 · · · α

q
n

α
q2

1 α
q2

2 · · · α
q2
n

...
...

...
...

α
qk−1

1 α
qk−1

2 · · · α
qk−1
n


.

C⊥ has ranks {d⊥ = k + 1,k + 2, ...,n}. For 1≤ t ≤ d , C⊥ has

n− t−d⊥+ 1 = n− t−k < d − t = n−k + 1− t

ranks in {1, ...,n− t}. So the minimum rank vectors of C and C⊥ hold t-designs..
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MRD Codes

An Fq-[n×m,k ,d ] code is called MRD if k = max{m,n}(min{m,n}−d + 1).

The minimum rank words of any MRD code hold t-designs, but they are
trivial! Every d-dimensional space of Fn

q is a d-support of the code.

If an Fqm -[n,k ,d ] rank metric code holds a trivial design, it must be MRD.

The last statement is false for rank metric codes that are not Fqm -linear.
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Other Examples?

No constructions of codes that hold non-trivial designs for t ≥ 2 are known yet.

Not many classes of rank-metric codes are known.

Known families of rank metric codes are all MRD.

Subspace designs from MRD codes are trivial.

Problem
Construct a family of Fqm -linear rank metric codes with a small number of ranks.

Problem
Construct Fq-linear matrix codes where the number of codewords with a given
d-support is invariant.
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Existence Results

Lemma (B. Ravagnani, 2018)

Let C is an Fq-[n×m,k ,d ] code satisfying the hypothesis of of the rank-metric
Assmus-Mattson theorem. If m ≥ logq(4) +n2/4, then C⊥ has either d or d + 1
ranks.

Theorem (B. Ravagnani, 2018)

Let C be an Fqm -[n,k ,d ] code if m ≥ n is sufficiently large then C⊥ has at least
n−k ranks.

Corollary (B. Ravagnani, 2018)

Let C be an Fqm -[n,k ,d ] code and let 1≤ t ≤ d −1. If m ≥ n is sufficiently large
and if C satisfies the hypothesis of the rank-metric Assmus-Mattson theorem then
d ≥ n−k.
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Existence Questions

Problem

Are any of the known subspace designs realizable as d-supports of Fqm -[n,k,d ]
rank metric codes?

Problem

Does there exist an Fqm -[7,k,3] rank metric code whose 3-supports form the Fano
plane?

Problem
Do there exist q-BCH codes with minimum rank distance ≥ 5 whose dual codes
have few ranks?

Problem
What can we say in general about existence of codes satisfying the rank
Assmus-Mattson theorem?
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